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1. (a) State the Banach fixed point theorem, and show that all the conditions of the theorem
are satisfied on a neighbourhood of x∗ if g(x) is twice continuously differentiable with
g(x∗) = x∗ and |g′(x∗)| < 1.

(b) What does it mean for the sequence xn defined by xn+1 = g(xn) to be convergent to
x∗ of order p? Show that if g is p-times differentiable with g(x∗) = x∗ and g′(x∗) =
g′′(x∗) = . . . = g(p−1)(x∗) = 0 then the sequence xn so defined is convergent of order p.

(c) Find m so that Newton’s method applied to f(x) = (x2 − a)xm converges (at least)
cubically to

√
a. State the resulting iteration in the form xn+1 = g(xn) avoiding square

roots in the definition of g.

2. Let f(x) be a given function and let pn(x) interpolate f at (distinct) interpolation points xi

for i = 0, . . . , n.

(a) Show that there is at most one polynomial pn(x) of degree at most n which interpolates
the given data.

(b) Write down the Newton form of the interpolating polynomial, and state the recursion
formula used to determine the required divided differences.

(c) Assuming that f is n-times differentiable, show that there exists ξ ∈ [x0, xn] such that

f [x0, x1, . . . , xn] =
f (n)(ξ)

n!
.

(d) Given that pn(t) which interpolates at x0, x1, . . . , xn is known, what is the formula for
pn+1(t) the polynomial of degree n + 1 which interpolates at x0, x1, . . . , xn, x? Hence
show that

f(x) = pn(x) +
f (n+1)(ξ)

(n+ 1)!

n
∏

i=0

(x− xi).

3. Let I(f) =
∫ 1
−1 f(x)dx be approximated by the quadrature rule

Ih(f) =

n
∑

i=0

wif(xi) (4.1)

(a) Show that for any choice of distinct x0, x1, . . . , xn, there is a quadrature formula with
degree of accuracy at least n, but that no matter how the distinct x0, x1, . . . , xn are
chosen there is no method with degree of accuracy more than 2n + 1. (You may freely

use any properties of interpolating polynomials needed, provided you state them clearly).

(b) Show that, for a suitable choice of the xi that a quadrature formula of the form (4.1)
with degree of accuracy 2n+ 1 can be obtained by integrating a Hermite polynomial of
degree 2n + 1;

H2n+1(x) =

n
∑

i=0

(

f(xi)ϕi(x) + f ′(xi)ψi(x)
)

,

where
ϕi(x) =

(

1 − 2(x− xi)l
′

i(xi)
)

[li(x)]
2, ψi(x) = (x− xi)[li(x)]

2

and li(x) is the ith fundamental Lagrange polynomial of degree n. (You may freely

use any properties of Legendre polynomials and interpolating polynomials that you need

provided you state them clearly).

(c) By considering f(x) = xi for i = 0, 1, 2, 3 find w0, w1, x0, x1 such that Ih(f) = w0f(x0)+
w1f(x1) has degree of accuracy 3.
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4. (a) Suppose that f(x) is three times continuously differentiable, and show that

f ′(x0) =
f(x0 + h) − f(x0)

h
− 1

2
hf ′′(ξ),

where ξ ∈ [x0, x0 + h].

(b) Suppose |f ′′(x)| 6 M for all x, and that h > 0. If we encounter roundoff errors δ1, δ2 in
computing f(x0 + h), f(x0) respectively, and |δ1|, |δ2| < δ, find an upper bound on the
total error in the approximation to f ′(x0). Determine the value of h which minimises
this bound, if δ = 2 × 10−8 and M = 100.

(c) Is the error formula given in (a) appropriate for the direct application of Richardson
extrapolation? If not, give an appropriate error formula. Apply one step of Richardson
extrapolation to the finite difference approximation in (a) to obtain an approximation
to f ′′(x0) with O(h2) error.

5. Consider the initial value problem

y′ = f(t, y) = λy, 0 6 t 6 T, y(0) = α > 0, λ < 0.

Suppose you approximate the solution y(t) using the Runge-Kutta method

y0 = α,
yn+1 = yn + 1

4hf(tn, wn) + 3
4hf

(

tn + 2
3h, yn + 2

3hf(tn, yn)
)

, n = 0, ...N

with time-step h.

(a) Show that y(tn+1) = ehλy(tn),

(b) and that yn+1 = (1 + hλ+ (hλ)2

2 )yn.

(c) Under what conditions on h does limn→∞ yn = 0 ?

(d) Show that 0 < y(tn) < yn for all n > 0.

6. Consider the boundary value problem

y′′ − y′ − 2y = cos x, 0 6 x 6
π

2
, y(0) = −0.3, y(π/2) = −0.1.

(a) Use the Linear Finite Difference method, with second order approximations to each
derivative, to formulate a numerical approximation to this problem as a matrix problem
Au = b, clearly stating the matrix A and vector b as well as the meaning of the elements
of the unknown vector x, with h = π/12. (Do not attempt to solve the resulting matrix

problem).

(b) Let τi be the truncation error in the finite difference equation at the ith mesh point, de-
fined as the residual when the exact solution y(x) is substituted into the finite difference
equation. Show that τi = O(h2).

(c) Let ei = y(xi) − ui and show that

h2τi =
[

1 − h

2

]

ei+1 − [2 + 2h2]ei +
[

1 +
h

2

]

ei−1,

and hence that for h < 2 that |e| := maxi |ei| = O(h2).


