McGILL UNIVERSITY FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 354

Examiner: Professor Jakobson

Associate Examiner: Professor Klemes

Date: Monday, December 18, 2006

Time: 14:00 - 17:00

INSTRUCTIONS

Answer any 6 of the following 7 questions. Each question is worth 10 points. Please give a detailed explanation for each answer. You may use any result proved in class or in the book, but must state precisely the statement that you are using.

Non-programmable calculators are permitted.

This is a closed-book exam

Dictionaries are permitted

This exam comprises the cover and two pages of questions.

This exam is printed on both sides (double-sided)

Problem 1. (10 points) Let X be a metric space with the distance ρ , and Y be a metric space with the distance σ . Let $X \times Y$ be the set of pairs $\{(x, y) : x \in X, y \in Y\}$. Define a distance d on $X \times Y$ by

$$d((x_1, y_1), (x_2, y_2)) = \max\{\rho(x_1, x_2), \sigma(y_1, y_2)\}.$$

Note that this defines, e.g., the d_{∞} distance on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$.

- a) (3 points) Prove that d defines a distance on $X \times Y$.
- b) (3 points) Define when a metric space is totally bounded.
- c) (4 points) Prove that if (X, ρ) and (Y, σ) are totally bounded, then so is $(X \times Y, d)$.

Problem 2. (10 points)

- a) (3 points) Define when a family of functions is (uniformly) equicontinuous.
- b) (3 points) State the Arzela-Ascoli theorem.
- c) (4 points) Consider the space X = C([0,1]) with the supremum distance, $d(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$, induced by the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$. Let Y be a bounded subset of X. Prove that the set of functions

$$F(x) = \int_0^x t \cdot f(t)dt, \qquad f \in Y$$

has compact closure.

Problem 3. (10 points)

- a) (2 points) Define when a subset of a metric space is *compact*.
- b) (3 points) Give an equivalent definition of compactness in \mathbb{R}^n .
- c) (5 points) Suppose that the function $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, and $f(\mathbf{x}) \ge ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$. Prove that $f^{-1}([0,1])$ is compact.

Problem 4. (10 points)

- a) (2 points) Define when a subset of a metric space is connected.
- b) (2 points) State the *Intermediate Value* theorem for metric spaces.
- c) (3 points) Prove that the set B of $(x, y) \in \mathbb{R}^2$ such that $(x 1)^2 + (y 2)^2 \le 5$ is connected.
- b) (3 points) Does the function $g(x,y) = \exp(|x| + |y|)$ attain the value 50 on the set B? You may use the fact that 2 < 2.7 < e < 2.8 < 3.

Problem 5. (10 points)

- a) (2 points) State the Contraction Mapping theorem.
- b) (6 points) Let Y be the set of continuous functions on [0, 1] that take values in [0, 1], with the uniform distance. Prove that Y is complete. Also, prove that the mapping A defined on Y by the formula $[Af](x) = [(f(x))^3 + x + 2]/4$ is a contraction mapping of Y into itself.
- c) (2 points) Conclude that there exists a unique function $f:[0,1] \to [0,1]$ satisfying $f(x) = [(f(x))^3 + x + 2]/4$.

Problem 6. (10 points)

- a) (4 points) Define when a sequence of functions (from a metric space to another metric space) converges uniformly.
- b) (6 points) Consider the sequence of functions $f_n:[0,\pi]\to\mathbb{R}$ defined by the formula $f_n=\sin\circ\sin\circ\ldots\circ\sin$ (taken n times), i.e. $f_1(x)=\sin x$, $f_2(x)=\sin(\sin x)$, $f_3(x)=\sin(\sin(\sin x))$ etc. Prove that the sequence of functions $\{f_n\}$ converges uniformly to the zero function as $n\to\infty$. You can use the fact that $0<\sin x< x$ for $0< x<\pi$.

Problem 7. (10 points)

- a) (4 points) State the *Implicit Function* theorem.
- b) (6 points) Let x, y, u, v be related by

$$xe^{u+v} + 2uv - 1 = 0,$$
 $ye^{u-v} - \frac{u}{1+v} - 2x = 0.$

Compute partial derivatives $(\partial u/\partial x)$, $(\partial v/\partial y)$ at the point where x=1, y=2 and u=v=0.