FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-355B

ANALYSIS IV

Examiner: Professor I. Klemes

Associate Examiner: Professor S. W. Drury

Date: Tuesday, April 18, 2000

Time: 2:00 pm - 5:00 pm

INSTRUCTIONS

This is a closed book examination.

Answer all 6 questions.

Each question is worth 10 marks.

Keep this exam paper.

This exam comprises the cover and 2 pages of questions.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be $\mathcal{B}(\mathbb{R}) \to \mathcal{B}(\mathbb{R})$ measurable and let $E = \{(x, y) \in \mathbb{R}^2 : y \leq f(x)\}$. Show that $E \in \mathcal{B}(\mathbb{R}^2)$. You may assume that

$$\mathcal{B}(\mathbb{R}^2) = \sigma(\{A \times B : A, B \in \mathcal{B}(\mathbb{R})\}) = \sigma(\{U : U \text{ is an open subset of } \mathbb{R}^2\}).$$

- 2. Let (X, \mathcal{M}, μ) be a measure space and let $f \in L^+$. (This means that $f: X \to [0, \infty]$ and f is measurable.)
 - (a) Define $\int f d\mu$.
 - (b) If $\int f d\mu < \infty$ show that $f(x) \in \mathbb{R}$ (i.e. f(x) is finite) for almost all $x \in X$.
 - (c) If $\epsilon > 0$ and $\int f d\mu < \infty$ show that there exists $E \in \mathcal{M}$ such that $\int_E f d\mu \geq \int f d\mu \epsilon$.
 - (d) If $\int f d\mu = 0$ show that f(x) = 0 for almost all $x \in X$.
- 3. (a) State Fatou's Lemma.
 - (b) If $f, f_n \in L^2, ||f_n||_2 = 1$, n = 1, 2, ... and if $f_n(x) \to f(x)$ for all $x \in X$, prove that $||f||_2 \le 1$.
 - (c) In (b), give an example such that $||f||_2 < 1$.
- 4. (a) State a version of the Dominated Convergence Theorem.
 - (b) Evaluate the following limits and justify your work.

i.

$$\lim_{n\to\infty}\int_1^\infty \frac{ne^{-x}}{n+x}dx.$$

ii.

$$\lim_{n\to\infty} \int_0^2 \frac{ne^{-x}}{1+n^2x^2} dx.$$

5. Let (X, \mathcal{M}, μ) be any measure space. Prove that the metric space L^2 is complete.

- 6. (a) Consider the functions $f_n(x) = \cos(nx), x \in [0, 2\pi], n = 1, 2, ...$ as points in the metric space $L^2([0, 2\pi])$. Show that the set $\{f_n : n \in \mathbb{N}\}$ is closed and bounded, but not compact.
 - (b) If $f:[0,1]\to [0,2]$ and if L(f) and U(f) are the Riemann lower and upper integrals of f, show that there exist measurable functions $\alpha,\beta:[0,1]\to\mathbb{R}$ such that $0\leq\alpha\leq f\leq\beta\leq 2$ and

 $\int \alpha dm \ = \ L(f), \quad \int \beta dm \ = \ U(f).$